MR. CHUNCHUN LI (Orcid ID: 0000-0002-3657-5856) PROFESSOR LIANG FANG (Orcid ID: 0000-0001-6568-3322) Article type : Article # Low-firing and temperature stable microwave dielectric ceramics: # $Ba_2LnV_3O_{11}$ (Ln = Nd, Sm) Chunchun Li^{1, 2*}, Huaicheng Xiang¹, Minyu Xu¹, Jibran Khaliq³, Junqi Chen¹, Liang Fang^{1*} ¹State Key Laboratory Breeding Base of Nonferrous metals and specific Materials Processing, Guangxi universities key laboratory of non-ferrous metal oxide electronic functional materials and devices, College of Material Science and Engineering, Guilin University of Technology, Guilin, 541004, China ²College of Information Science and Engineering, Guilin University of Technology, Guilin, 541004, China ³Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom #### **Abstract** Low-firing and temperature stable microwave dielectric ceramics of Ba₂LnV₃O₁₁ (Ln = Nd, Sm) were prepared by solid-state reaction. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate the phase purity, crystal structure, sintering behavior, and microstructure. The XRD patterns indicated that Ba₂LnV₃O₁₁ (Ln =Nd, Sm) ceramics belong to monoclinic crystal system with $P2_1/c$ space group in the whole sintering temperature range (800-900 °C). Both ceramics could be well densified at 880 °C for 4 h with relative densities higher than 96%. The Ba₂LnV₃O₁₁ (Ln =Nd, Sm) samples ^{*} Corresponding Author, fanglianggl001@aliyun.com; lichunchun2003@126.com This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/jace.15251 This article is protected by copyright. All rights reserved. sintered at 880 °C for 4 h exhibited excellent microwave dielectric properties: $\varepsilon_r = 12.05$, $Q \times f = 23,010 \text{ GHz}$, $\tau_f = -7.7 \text{ ppm/°C}$, and $\varepsilon_r = 12.19$, $Q \times f = 27,120 \text{ GHz}$, $\tau_f = -16.2 \text{ ppm/°C}$, respectively. Besides, Ba₂LnV₃O₁₁ (Ln =Nd, Sm) ceramics could be well co-fired with the silver electrode at 880 °C. **Keywords:** Ba₂LnV₃O₁₁ (Ln =Nd, Sm); Microwave dielectric properties; LTCC; Chemical compatibility. ## 1. Introduction Microwave dielectric devices have been widely used in dielectric resonators, dielectric filters, and dielectric antennas, etc.^{1, 2} In the last few decades, the rapid development in wireless communications, such as satellite broadcasting, radar transponder, 5G wireless systems, and Internet of Things (IoT), has led to extensive studies on the microwave dielectric ceramics with high performance.³⁻⁶ For practical applications, an appropriate relative permittivity (ε), a near-zero temperature coefficient of resonant frequency (τ) for thermal stability, and a high quality factor ($Q \times f$) for frequency selectivity are crucially required.⁷⁻¹⁰ In addition, in order to fulfill the rapidly increasing demand for miniaturization and integration, low temperature co-fired ceramic (LTCC) technology has gained substantial attention and vast development. LTCC technology has become a crucial step in the fabrication of integrated circuits. For LTCC applications, the microwave dielectric materials are primarily required to have low sintering temperatures to co-fire with the commonly used and highly conducting metals (e.g. 960 °C for Ag and 1083 °C for Cu).¹¹⁻¹⁴ Recently, a large number of glass-free low temperature firing microwave dielectric materials have been reported. Most of them are based on the material systems with low-melting-points constituents, for example, BiVO₄, ¹⁵ BaCaV₂O₇, ¹⁶ Ca₅Ni₄(VO₄)₆, ¹⁷ Mg₂SiO₄. ¹⁸ In recent decades, good microwave dielectric properties have also been reported in some Ln-based vanadate ceramics. 19-21 For example, the NdVO4 ceramic sintered at 1160 °C for 4 h possessed excellent microwave dielectric properties: $\varepsilon_r = 12.0$, $Q \times f = 36,440$ GHz, and $\tau_f = -44.3 \text{ ppm/}^{\circ}\text{C.}^{20}$ In our previous work, the microwave dielectric properties of compounds in the ternary vandates BaO-Ln₂O₃-V₂O₅ were characterized. Among them, Ba₂LaV₃O₁₁ has attracted extensive attention in recent years due to its excellent microwave dielectric properties ($\varepsilon_r = 12.8$, $Q \times f = 31,800$ GHz, and $\tau_f = -14.0$ ppm/°C), and low sintering temperature (840 $^{\rm o}$ C). $^{\rm 22}$ We also found that Ba₂BiV₃O₁₁ ceramic could be densified at 870 $^{\rm o}$ C and possessed good microwave dielectric properties with $\varepsilon_r = 14.2$, $Q \times f = 68,700$ GHz, and $\tau_f = -81.0 \text{ ppm/}^{\circ}\text{C.}^{23}$ This stimulates us to investigate whether other compounds in Ba₂LnV₃O₁₁ system exhibit good microwave dielectric properties. Therefore, in this work, $Ba_2LnV_3O_{11}$ (Ln = Nd, Sm) ceramics were prepared with an attempt to develop novel low-firing ceramics. The microstructures and microwave dielectric properties were investigated. Their chemical compatibility with silver (Ag) has also been investigated. ### 2. Experimental section #### 2.1. Preparation Ba₂LnV₃O₁₁ ceramics were prepared by the conventional solid state method with high-purity BaCO₃, Nd₂O₃, Sm₂O₃, and NH₄VO₃ (> 99%, Guo-Yao Co., Ltd., Shanghai, China) as starting reagents. The stoichiometrically weighed powders were mixed and ball-milled in alcohol medium for 6 h, followed by drying at 120 °C. The dried powers were calcined at 750 °C for 4 h, and then re-milled for 6 h. The resultant powders were granulated with polyvinyl alcohol (PVA, 10 vol%) as a binder, and pressed into cylindrical pellets of 10 mm in diameter and 6 mm in thickness in a steel die under a pressure of 350 MPa. The pellets were first heated at 550 °C in air for 4 h at a heating rate of 1.5 °C/min to burn out the organic binder, and then sintered over a temperature range of 800 °C–900 °C for 4 h with a heating rate of 5 °C/min. #### 2.2 Characterizations The powder X-ray diffraction (XRD) (Cu $K\alpha I$, 1.54059 Å, Model X'Pert PRO, PANalytical, Almelo, Holland) was carried out on the calcined powders to identify the crystal structure and phase purity. The microstructures of the ceramics were characterized by field emission scanning electron microscopy (FE-SEM, Model S4800, Hitachi, Japan). The densities of the sintered ceramics were determined using the Archimedes' method. The dielectric properties at microwave frequencies were recorded by the network analyzer (Model N5230A, Agilent Co., Palo Alto, California) and temperature chamber (Delta 9039, Delta Design, San Diego, CA). The temperature coefficient of resonant frequency (τ_l) was calculated by the equation: $$\tau_f = \frac{f_{T_1} - f_{T_0}}{f_{T_0}(T_1 - T_0)} \tag{1}$$ where, f_{T_1} and f_{T_0} were the resonant frequencies at 85 °C and room temperature, respectively. #### 3. Results and discussion #### 3.1 Structure and morphology Fig. 1(a) depicts the XRD patterns of the calcined $Ba_2NdV_3O_{11}$ and $Ba_2SmV_3O_{11}$ powders at 750 °C for 4 h. Both compounds exhibited similar diffraction patterns and all the observed peaks matched well with the standard card JCPDS No. 40-0105 for $Ba_2LaV_3O_{11}$. This result indicates that $Ba_2NdV_3O_{11}$ and $Ba_2SmV_3O_{11}$ well crystallized in single phase with a monoclinic space group $P2_1/c$ (14). The lattice parameters were calculated by the least square refinement with a = 12.37 Å, b = 7.76 Å, c = 11.26 Å, $\beta = 103.5^{\circ}$, and V = 1051.82 Å³ for $Ba_2NdV_3O_{11}$ and a = 12.35 Å, b = 7.74 Å, c = 11.23 Å, $\beta = 103.2$ °, and V = 1047.12 Å³ for $Ba_2SmV_3O_{11}$, respectively. The schematic of crystal structure for $Ba_2LnV_3O_{11}$ is shown in Fig. 1(b). As shown, Ln atoms are six-coordinated in distorted octahedra and $[LnO_6]$ octahedra are edge-sharing, while V atoms are connected with four neighboring oxygen forming $[VO_4]$ tetrahedra. The adjacent $[LnO_6]$ octahedra and $[VO_4]$ tetrahedra are corner shared. Ba atoms are located in the interspace of the tetrahedra and octahedra. Fig. 2(a-e) shows SEM micrographs of Ba₂NdV₃O₁₁ ceramics sintered at 820 °C to 900 °C and Fig. 2(f) for Ba₂SmV₃O₁₁ sintered at 880 °C. As shown, a porous microstructure with an average grain size of 1–2 μm was observed in the Ba₂NdV₃O₁₁ samples sintered at 820 °C. With the increasing sintering temperature, the amount of pore decreased and the grains gradually grew up. As the sintering temperature increased to 880 °C, a homogeneous microstructure with evidently identifiable grain boundaries was obtained for Ba₂NdV₃O₁₁. However, further increase in sintering temperature to 900 °C induced abnormal grain growth with large grains (~ 6 μm). Similar phenomena were observed in Ba₂SmV₃O₁₁ ceramics, and the ceramic sintered at 880 °C exhibited dense microstructure with closely-packed grains, as shown in Fig. 2(f). ### 3.2 Microwave dielectric properties The variations in the relative density and relative permittivity of the Ba₂LnV₃O₁₁ ceramics as a function of sintering temperature are shown in Fig. 3. With increasing sintering temperature, the relative density gradually increased to a maximum value and then declined slightly. The optimum densification temperatures for both ceramics were determined to be 880 °C with a maximum relative density of 96.2 % for Ba₂NdV₃O₁₁ and 97.1 % for Ba₂SmV₃O₁₁ ceramic, respectively. As shown in Fig. 3(b), the relative permittivity (ε_r) exhibited a similar variation trend with the increasing sintering temperature to the density and the saturated ε_r values were achieved in the best sintered samples with $\varepsilon_r = 12.05$ for Ba₂NdV₃O₁₁ and 12.19 for Ba₂SmV₃O₁₁, respectively. This result suggests the crucial effect of density on the relative permittivity, especially for the samples with porosity. Thus, to eliminate the effects of porosity, the relative permittivity was corrected according to by the Bosman and Having's porosity correction equation:^{24, 25} $$\varepsilon_{corr} = \varepsilon_r (1 + 1.5p) \tag{2}$$ where, p is the fractional porosity. The ε_{corr} values of Ba₂LnV₃O₁₁ (Ln = Nd, Sm) ceramics at 880 °C are about 12.73 and 12.74, respectively. Besides, the theoretical permittivity was evaluated according to Clausius–Mossotti equation:^{26, 27} $$\varepsilon_{r} = \frac{1 + 2b\alpha_{D}^{T}/V_{m}}{1 - b\alpha_{D}^{T}/V_{m}} \tag{3}$$ where, $b = 4\pi/3$, α_D^T is the molecular polarizability and V_m is the cell volume. The calculated theoretical permittivity of Ba₂NdV₃O₁₁ is 12.14 and 12.09 for Ba₂SmV₃O₁₁. The slightly higher theoretical permittivity of Ba₂NdV₃O₁₁ than its Sm counterpart could be due to the larger ionic polarizability of Nd³⁺ (5.01 Å) than Sm³⁺ (4.74 Å). Additionally, the relative error between the porosity corrected ε_r and the theoretical density is about 7.2% for the Ba₂NdV₃O₁₁ ceramic and 8.3% for Ba₂SmV₃O₁₁ ceramic, which indicates that ionic polarization plays a prominent role in the dielectric polarizability in the microwave frequency region. ^{11, 28} Fig. 4 shows the $Q \times f$ and τ_f values of the Ba₂NdV₃O₁₁ and Ba₂SmV₃O₁₁ ceramics sintered at different temperatures for 4 h. Similar to the density and relative permittivity, the quality factors also exhibited strong dependency on the sintering temperature. With increasing sintering temperature, the $Q \times f$ values initially increased to a maximum value and then decreased. The maximum $Q \times f$ values of 23,010 GHz for Ba₂NdV₃O₁₁ and 27,120 GHz for Ba₂SmV₃O₁₁ were obtained at 880 °C for 4 h, respectively. In general, the $Q \times f$ value depends on the intrinsic parameters such as structural characteristics and the extrinsic parameters such as porosity, secondary phases, and lattice defects.^{29, 30} For ceramics with high relative densities > 95 % and no secondary phases, the extrinsic impacts on $Q \times f$ value could be depressed. According to the study of Kim *et al.*,³¹ the $Q \times f$ also could be highly dependent on the packing fraction. The packing fraction could be calculated by the equation: $$packing fraction (\%) = \frac{volume of packed ions}{volume of unit cell} \times Z$$ (4) where, Z is the number of formula units per unit cell. The packing fraction of Ba₂NdV₃O₁₁ is 57.9 %, and 58.1 % for Ba₂SmV₃O₁₁. For comparison, the calculated packing fractions for Ba₂LnV₃O₁₁ (Ln = Bi, La, Nd, Sm) ceramics are listed in Table 1. Ba₂LnV₃O₁₁ ceramics with lower Ln-site ionic radius decreased the unit cell volume, which in turn increased the packing fraction. It is obviously seen that a larger packing fraction directly corresponds to a higher $Q \times f$ value. Therefore, the variation in the $Q \times f$ value of Ba₂LnV₃O₁₁ (Ln = Bi, La, Nd, Sm) ceramics could be explained by the difference in packing faction. The increase in packing fraction indicates that the space for lattice vibrations decreases, and thus reduces the intrinsic loss. As presented in Fig. 4(b), over the sintering temperature range from 800-900 °C, no significant change in the τ_f value was observed. When sintered at 880 °C for 4 h, Ba₂NdV₃O₁₁ possessed a near-zero τ_f value of -7.7 ppm/°C while Ba₂SmV₃O₁₁ had a relatively negative τ_f value of -16.2 ppm/°C. The τ_f value is a function of the temperature coefficient of the dielectric constant (τ_ϵ) and the linear thermal expansion coefficient (α_L), as show in equation: $$\tau_f = -\left(\frac{\tau_{\varepsilon}}{2} + \alpha_{L}\right) \tag{5}$$ where, α_L is a typically constant for dielectric ceramics, and τ_{ε} depends on the tilting of oxygen octahedral.³⁴ The degree of tilting on oxygen octahedral could be reflected by the bond valence and bond length between the cations and oxygen atoms. According to the bond valence theory, the τ_f value is related to chemical nature of ions, the distance between cations and anions, the bond valence of oxygen octahedra.^{35, 36} According to Fig. 1(b), Ln atoms are six-coordinated in octahedra. The bond valences between Ln cations and oxygen ions of the Ba₂LnV₃O₁₁ ceramics calculated by the following formulas: $$V_{i} = \sum_{i} v_{ij} \tag{6}$$ $$v_{ij} = \exp\left[\frac{R_{ij} - d_{ij}}{b}\right] \tag{7}$$ where R_{ij} is the bond valence parameter, d_{ij} is the length of a bond between atoms i and j, and b is a universal constant (0.37 Å). As shown in Table 1, V_{Ln} is 3.082 and 3.305 for $Ba_2NdV_3O_{11}$ and $Ba_2SmV_3O_{11}$. The increase in bond valence of Ln cation results in an increase in bond strength between Ln cation with oxygen, which in turn increases the thermal energy for tilted structure recovering, and thus τ_f value decreased. 38 #### 3.3 Chemical compatibility with silver electrode For LTCC applications, the microwave dielectric materials should have chemical compatibility with metal electrodes. Silver is a commonly used electrode material because of its high electric conductivity and relatively low price. In the present work, 15 wt% Ag powder was mixed with the Ba₂LnV₃O₁₁ (Ln = Nd, Sm) and co-fired at 880 °C for 4 h to confirm their chemical compatibility. XRD patterns and SEM images of the co-fired ceramics are shown in Fig. 5. Only the diffraction peaks of Ba₂LnV₃O₁₁ (Ln = Nd, Sm) and silver (marked with "Ag" in Fig.5) were detected in the XRD patterns. Additionally, SEM images showed two different kinds of grains with the larger grains to be Ag. Thus, no chemical reaction occurred between the Ba₂LnV₃O₁₁ (Ln = Nd, Sm) ceramics and Ag electrode when sintered at 880 °C for 4 h. All the results indicate that Ba₂LnV₃O₁₁ (Ln = Nd, Sm) ceramics could be possible candidates for applications in LTCC technology due to their low sintering temperature, excellent microwave dielectric properties, and reliable compatibility with silver electrodes. Table 2 displays the sintering temperatures, microwave dielectric properties and chemical compatibility with Ag electrode of some LTCC materials. All these ceramics possess low sintering temperatures (lower than 960 °C) except for NdVO₄. The microwave permittivity of the Ba₂LnV₃O₁₁ (Ln = Nd, Sm) ceramics is comparable to the garnet structured Na₂LnMg₂V₃O₁₂ (Ln = Nd, Sm), whereas the quality factor is inferior to BaMg₂(VO₄)₂. However, Ba₂LnV₃O₁₁ (Ln = Nd, Sm) ceramics possess near-zero τ_f values, which guarantees the thermal stability of materials and devices. ### 3.4 Thermal expansion The variable-temperature (VT) XRD patterns performed on Ba₂LnV₃O₁₁ (Ln = Nd, Sm) over 25-120 °C are shown in Fig. 6. It is obvious that the main peaks of both ceramics slightly shifted with increasing measurement temperature, indicating the variation in the lattice parameters and cell volume. The unit cell parameters of Ba₂LnV₃O₁₁ (Ln = Nd, Sm) ceramics were refined using the least square method and shown in Fig. 7 as a function of temperature from 25 to 120 °C. As the temperature increased, the cell parameters a, b, c, and V slightly increased for both ceramics. This indicates Ba₂LnV₃O₁₁ (Ln = Nd, Sm) ceramics have positive thermal expansion coefficient. From 25 to 120 °C, the thermal expansion coefficient coefficients of $\alpha_a = 1.47 \times 10^{-6}$ and 1.73×10^{-6} K⁻¹, $\alpha_b = 2.80 \times 10^{-6}$ and 3.15×10^{-6} K⁻¹, $\alpha_c = 2.14 \times 10^{-6}$ and 2.08×10^{-6} K⁻¹, $\alpha_V = 2.36 \times 10^{-6}$ and 2.65×10^{-6} K⁻¹ for Ba₂LnV₃O₁₁ and Ba₂LnV₃O₁₁, respectively. ### 4. Conclusions This work has shown that low temperature sintering process could able to prepare the Ba₂LnV₃O₁₁ (Ln =Nd, Sm) single phase. The X-ray diffraction analyses indicated that Ba₂LnV₃O₁₁ (Ln =Nd, Sm) ceramics belong to monoclinic system with $P2_1/c$ space group in the whole sintering temperature range. Ba₂LnV₃O₁₁ (Ln =Nd, Sm) ceramics could be well densified at temperature at 880 °C with relative densities higher than 96%. The Ba₂LnV₃O₁₁ (Ln =Nd, Sm) samples sintered at 880 °C for 4 h exhibited excellent microwave dielectric properties: $\varepsilon_r = 12.05$ and 12.19, $Q \times f = 23,010$ GHz and 27,120 GHz, $\tau_f = -7.7$ ppm/°C and -16.2 ppm/°C, respectively. Additionally, Ba₂LnV₃O₁₁ (Ln =Nd, Sm) ceramics could be co-fired with the silver electrode at 880 °C. All the results indicate that the Ba₂LnV₃O₁₁ (Ln =Nd, Sm) ceramics are suitable materials in LTCC applications. # Acknowledgments This work was supported by Natural Science Foundation of China (Nos. 21561008, 51502047, and 21761008), the Natural Science Foundation of Guangxi Zhuang Autonomous Region (Nos. 2015GXNSFFA139003, 2016GXNSFBA380134, and 2016GXNSFAA380018), Project of Scientific Research and Technical Exploitation Program of Guilin (2016010702-2), Innovation Project of Guangxi Graduate Education (YCBZ2017052), and the Project of Department of Science and Technology of Guangxi (2015AA07036). We appreciate for Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi for the financial support. ### References - 1.Cava RJ. Dielectric materials for applications in microwave communications. *J Mater Chem.* 2001;11:54–62. - 2. Fujii T, Ando A, Sakabe Y. Charaterization of dielectric properties of oxide materials in frequency range from GHz to THz. *J Eur Ceram Soc.* 2006;26:1857–1860. - 3. Zhou D, Pang LX, Wang H, Yao X. Low temperature firing microwave dielectric ceramics $(K_{0.5}Ln_{0.5})MoO_4$ (Ln = Nd and Sm) with low dielectric loss. *J Eur Ceram Soc*. 2011;31:2749–52. - 4. Reaney IM, Iddles D. Mcrowave dielectric ceramics for resonators and filters in mobile phone networks. *J Am Ceram Soc.* 2006;89:2063–72. - 5. Valant M, Suvorov D. Glass-free low-temperature cofired ceramics: calcium germanates, silicates and tellurates. *J Eur Ceram Soc.* 2004;24:1715–9. - 6. Xiang HC, Fang L, Fang WS, Tang Y, Li CC. A novel low-firing microwave dielectric ceramic Li₂ZnGe₃O₈ with cubic spinel structure. *J Eur Ceram Soc.* 2017;37:625–629. - 7. Hu CZ, Fang L, Su HP, Liu LJ, Wu BL. Effects of Sr substitution on microwave dielectric properties of Ba₃LaNb₃O₁₂ ceramics. *J Alloys Compd.* 2009;487:504–506. - 8. Wakino K. Miniaturization techniques of microwave components for mobile communications systems—using low loss dielectrics. *Ferroelectr Rev.* 2000;22:1–49. - 9. Lei W, Lu WZ, Liu D, Zhu JH. Phase evolution and microwave dielectric properties of (1-x)ZnAl₂O₄-xMg₂TiO₄ ceramics. *J Am Ceram Soc.* 2009;92:105–109. - 10. Zhou D, Guo D, Li WB, Pang LX, Yao X, Wang DW, Reaney IM. Novel temperature stable high-er microwave dielectrics in the Bi₂O₃–TiO₂–V₂O₅ system. *J Mater Chem C*. 2016;4:5357-5362. - 11. Zhou D, Randall CA, Wang H, Yao X. Microwave dielectric properties of Li₂WO₄ ceramic with ultra-low sintering temperature. *J Am Ceram Soc.* 2011;94:348–350. - 12. Lei W, Lu WZ, Zhu JH, Wang XH. Microwave dielectric properties of ZnAl₂O₄-TiO₂ spinel-based composites. *Mater Lett.* 2007;61:4066–4069. - 13. Takada T, Wang SF, Yoshikawa S, Jang SJ, Newnham RE. Effect of glassadditions on BaO–TiO₂–WO₃ microwave ceramics. *J Am Ceram Soc.* 1994;77:1909–16. - 14. Fang L, Su CX, Zhou HF, Wei ZH, Zhang H. Novel low-firing microwave dielectric ceramic LiCa₃MgV₃O₁₂ with low dielectric loss. *J Am Ceram Soc.* 2013;96:688–690. - 15. Pang LX, Zhou D, Qi ZM, Liu WG, Yue ZX, Reaney IM. Structure–property relationships of low sintering temperature scheelite-structured (1-x)BiVO₄–xLaNbO₄ microwave dielectric ceramics. *J Mater Chem C*. 2017;5:2695–2701. - 16. Jiang XW, Li CC, Su CX, Wei ZH, Fang L. Low temperature firing and microwave dielectric properties of BaCaV₂O₇ ceramics. *Ceram Int.* 2015;41:5172–5176. - 17. Wang D, Xiang HC, Tang Y, Fang L, Khaliq J, Li CC, A low-firing Ca₅Ni₄(VO₄)₆ ceramic with tunable microwave dielectric properties and chemical compatibility with Ag. *Ceram Int. 2016:42;15094–15098. - 18. Zhang J, Yue ZX, Luo Y, Zhang XH, Li LT, Novel low-firing forsterite-based microwave dielectric for LTCC applications. *J Am Ceram Soc.* 2016;99:1122–1124. - 19. Wang Y, Zuo RZ, Zhang C, Zhang J, Zhang TW, Low-temperature-fired ReVO₄ (Re=La, Ce) microwave dielectric ceramics. *J Am Ceram Soc.* 2015;98:1–4. - 20. Li W, Fang L, Sun YH, Tang Y, Chen JW, Li CC, Preparation, crystal structure and - microwave dielectric properties of rare-earth vanadates: ReVO₄ (Re = Nd, Sm). J Electron Mater. 2017;46:1956–1962. - 21. Tang Y, Jiang XW, Xiang HC, Li CC, Fang L, Xing XR. Two novel low-firing $Na_2AMg_2V_3O_{12}$ (A = Nd, Sm) ceramics and their chemical compatibility with silver. Ceram Int. 2017;43:2892–2898. - 22. Li J, Fang L, Luo H, Tang Y, Li CC. Structure and microwave dielectric properties of a novel temperature stable low-firing Ba₂LaV₃O₁₁ ceramic. *J Eur Ceram Soc*. 2016;36:2143–2148. - 23. Li J, Li CC, Wei ZH, Tang Y, Su CX, Fang L. Microwave dielectric properties of a low-firing Ba₂BiV₃O₁₁ ceramic. *J Am Ceram Soc.* 2015;98:683–686. - 24. Penn SJ, Alford NM, Templeton A, Wang XR, Xu MS, Reece M, Schrapel K. Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. *J Am Ceram Soc.* 1997;80:1885–8. - Bosman AJ, Havinga EE. Temperature dependence of dielectric constants of cubic ionic compounds. *Phys Rev.* 1963;129:1593–600. - 26. Shannon RD. Dielectric polarizabilities of ions in oxides and fluorides. *J Appl Phys*. 1993;73:348–366. - 27. Yoon SH, Kim DW, Cho SY, Sun HK. Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. *J Eur Ceram Soc.* 2006;26:2051–2054. - 28. Li J, Fang L, Luo H, Khaliq J, Tang Y, Li CC. Li₄WO₅: A temperature stable low-firing microwave dielectric ceramic with rock salt structure. *J Eur Ceram Soc.* 2016;36:243-246. - 29. Zhou D, Randall CA, Baker A, Wang H, Pang LX, Yao X. Dielectric properties of an ultra-low-temperature cofiring Bi₂Mo₂O₉ multilayer. *J Am Ceram Soc*. 2010;93:1443–1446. - 30. Chen YC, Wang YN, Hsu CH. Enhancement microwave dielectric properties of Mg₂SnO₄ ceramics by substituting Mg²⁺ with Ni²⁺. *Mater Chem Phys.* 2012;133:829–33. - 31. Kim ES, Chun BS, Freer R, Cernik RJ. Effects of packing fraction and bond valence on microwave dielectric properties of A²⁺B⁶⁺O₄ (A²⁺: Ca, Pb, Ba; B⁶⁺: Mo, W) ceramics. *J* Eur Ceram Soc. 2010;30:1731–1736. - 32. Galasso FS, Kurti N, Smoluchowski R. *Structure and properties of inorganic solids*. Pergamon Press, 1970. - 33. Reaney IM, Colla EL, Setter N. Dielectric and structural characteristics of Ba- and Sr-based complex perovskites as a function of tolerance factor. *Jpn Appl Phys*. 1994;33:984–3990. - 34. Hirata T. Oxygen position, octahedral distortion, and bond-valence parameter from bond lengths in $Ti_{1-x}Sn_xO2$, $(0 \le x \le 1)$. *J Am Ceram Soc.* 2000;83:3205–3207. - 35. Kim WS, Yoon KH. Microwave dielectric properties and far-infrared reflectivity characteristics of the CaTiO₃–Li_{(1/2)-3x}Sm_{(1/2)+x}TiO₃ ceramics. *J Am Ceram Soc*. 2000;83:2327–29. - 36. Zhou D, Wang H, Pang LXi, Randall CA, Yao X. Bi2O₃–MoO₃ Binary system: an alternative ultralow sintering temperature microwave dielectric. *J Am Ceram Soc*. 2009;92:2242–2246. - 37. Brese NE, O'Keeffe M. Bond-valence parameters for solids. *Acta Crystallogr*. 1991;B47:192–197. - 38. Moulson AJ, Herbert JM. *Electroceramics: materials, properties, applications*. Wiley, 2003. - 39. Fang L, Guo HH, Fang WS, Wei ZH, Li CC. BaTa₂V₂O₁₁: A novel low fired microwave dielectric ceramic. *J Eur Ceram Soc.* 2015;35:3765–3770. - 40. Joung M R, Kim JS, Song ME, Nahm S, Paik JH. Formation process and microwave dielectric properties of the R₂V₂O₇ (R=Ba, Sr and Ca) Ceramics. *J. Am. Ceram. Soc.* 2009;92:3092–3094. - 41. Wang Y, Zuo RZ. A novel low-temperature fired microwave dielectric ceramic BaMg₂V₂O₈ with ultra-low loss. *J Eur Ceram Soc.* 2016;36:247–251. - 42. Suresh EK, Prasad K, Arun NS, Ratheesh R. Synthesis and microwave dielectric properties of $A_{16}V_{18}V_{61}$ (A = Ba, Sr and Ca) ceramics for LTCC applications. *J Electron Mater*. 2016;45:2996–3002. - 43. Tang Y, Jiang XW, Xiang HC, Li CC, Fang L, Xing XR. Two novel low-firing Na₂AMg₂V₃O₁₂(A=Nd, Sm) ceramics and their chemical compatibility with silver. Ceram Int. 2017;43;2892–2898. Table 1 The packing fraction, bond valence and microwave dielectric properties of Ba₂LnV₃O₁₁ (Ln = Bi, La, Nd, and Sm) ceramics | Ceramics | S.T.
(°C) | \mathcal{E}_r | Q×f
(GHz) | $ au_f$ (ppm/°C) | Unit cell
Volume(Å ³) | Packing fraction (%) | V_{Ln-O} | Reference | |--|--------------|-----------------|--------------|------------------|--------------------------------------|----------------------|------------|-----------| | Ba ₂ BiV ₃ O ₁₁ | 870 | 14.20 | 68,700 | -81 | 1049.40 | 59.5 | 3.081 | [23] | | $Ba_{2}LaV_{3}O_{11} \\$ | 840 | 12.80 | 31,800 | -14 | 1066.80 | 58.5 | 3.481 | [22] | | $Ba_2NdV_3O_{11} \\$ | 880 | 12.05 | 23,010 | -7.7 | 1051.82 | 57.9 | 3.082 | This work | | $Ba_2SmV_3O_{11} \\$ | 880 | 12.19 | 27,120 | -16.2 | 1047.12 | 58.1 | 3.305 | This work | Table 2 Sintering temperatures, microwave dielectric properties and chemical compatibility with Ag of some LTCC ceramics | Ceramics | S.T. (°C) | \mathcal{E}_r | $Q \times f(GHz)$ | $\tau_f(\text{ppm/}^{\circ}\text{C})$ | Reactivity with Ag | Reference | |--------------------------|-----------|-----------------|-------------------|---------------------------------------|--------------------|-----------| | $Ba_2NdV_3O_{11}$ | 880 | 12.05 | 23,010 | -7.7 | No | This work | | $Ba_2SmV_3O_{11} \\$ | 880 | 12.19 | 27,120 | -16.2 | No | This work | | $\mathrm{Ba_2V_2O_7}$ | 900 | 10.1 | 51,630 | -26.5 | No report | [40] | | $BaCaV_2O_7$ | 830 | 8.9 | 31,362 | -68.2 | No report | [16] | | $BaTa_{2}V_{2}O_{11} \\$ | 870 | 28.2 | 41,958 | +90 | Yes | [39] | | $BaMg_2(VO_4)_2$ | 900 | 12 | 156,140 | -36 | No report | [41] | | $Ba_{16}V_{18}O_{61}$ | 620 | 9.7 | 80,100 | -61 | No | [42] | | $NdVO_4$ | 1160 | 12 | 36,440 | -44.3 | No report | [20] | | $Na_2NdMg_2V_3O_{12} \\$ | 850 | 12 | 26,544 | -63 | No | [43] | | $Na_2SmMg_2V_3O_{12}$ | 850 | 12.1 | 36,207 | -69 | No | [43] | ## **Figure Captions:** - Fig.1 The standard $Ba_2LaV_3O_{11}$ (No. 40-0105) profile as well as the XRD patterns of the calcined $Ba_2NdV_3O_{11}$ and $Ba_2SmV_3O_{11}$ (a), and the schematic crystal structure of $Ba_2LnV_3O_{11}$ (Ln = Nd, Sm) (b). - **Fig.2** SEM micrographs of $Ba_2NdV_3O_{11}$ ceramics sintered at 820 °C to 900 °C (a-e) and $Ba_2SmV_3O_{11}$ sintered at 880 °C (f). - **Fig.3** Variation in relative density (a) and relative permittivity (b) of the Ba₂NdV₃O₁₁ and Ba₂SmV₃O₁₁ ceramics as a function of sintering temperature. - **Fig.4** $Q \times f$ and τ_f values of the Ba₂NdV₃O₁₁ and Ba₂SmV₃O₁₁ ceramics sintered at different temperatures for 4 h (the loss tangent shown in the inset). - Fig.5 The XRD patterns and backscattered electron (BSE) images of $Ba_2LnV_3O_{11}$ (Ln = Nd, Sm) ceramics with 15 wt% Ag cofired at 880 °C. - Fig.6 Selected VT-XRD patterens of Ba₂LnV₃O₁₁ (Ln = Nd, Sm) ceramics over 25-120 °C. - **Fig.7** The variation in unit cell parameters (a, b, c, and V) of Ba₂LnV₃O₁₁ (Ln = Nd, Sm) over 25-120 °C.